
mda-load library v1.0.0 manual

Dohn Alexander Arms
dohnarms@anl.gov

November 17, 2009

This library is used to load MDA files created by the saveData program that is part of EPICS.

1 Compiling

Compiling requires that you specify the mda-load library. This can be done directly by specifying the
filename libmda-load.a and its path. If the library is in a standard search location for libraries, you can
use the “-l mda-load” option with gcc or ld.

If you are using Solaris, you will also need to specify the Networking Services Library (nsl). This can be
done with the “-l nsl” option.

2 Code

An MDA file structure has a defined structure that is mimicked by the data structures this library uses.
There first is a header describing the scan(s), followed by the highest dimensional scan, then all the lower
dimensional scans, and finally by an optional section of extra PVs.

2.1 Functions

There are functions for loading the entire file or just parts of it. The function and structure definitions are
in the include file mda-load.h.

In the following functions, fptr is a FILE pointer corresponding to an open MDA file, normally gotten
from fopen() and removed by fclose(). It doesn’t matter what position the pointer is at in the file when
calling these functions.

struct mda_file *mda_load(FILE *fptr)
This function loads the entire MDA file at once, returning a pointer to an mda_file structure.

void mda_unload(struct mda_file *mda)
This will free the memory occupied by the mda_file to which mda points.

struct mda_header *mda_header_load(FILE *fptr)
This function loads the MDA file header, returning a pointer to a mda_header structure.

void mda_header_unload(struct mda_header *header)
This will free the memory occupied by the mda_header to which header points.

struct scan *mda_scan_load(FILE *fptr)
This function loads the entire scan structure (all dimensions) for an MDA file, returning a pointer to a
mda_scan structure. It is the same as mda_subscan_load(), where depth is zero and recursive is one.

1

struct mda_scan *mda_subscan_load(FILE *fptr, int depth, int *indices, int recursive)
This function loads only a part of an MDA file’s scans, returning a pointer to the resulting mda_scan
structure. The depth refers to how many dimensions down into the scan the subscan is located (it has to be
less than the number of dimensions in the file), and to the number of members in indices. The indices
array contains the location of the subscan, starting with the highest dimensional index; if depth is zero,
indices can be set to NULL. The recursive flag determines whether the lower dimensional scans will also
be read (if any exist).

void mda_scan_unload(struct mda_scan *scan)
This will free the memory occupied by the mda_scan to which scan points.

struct mda_extra *mda_extra_load(FILE *fptr)
This function attempts to load the extra PVs for an MDA file. If they exist, it returns a pointer to an
mda_extra structure, otherwise it returns NULL.

void mda_extra_unload(struct mda_extra *extra)
This will free the memory occupied by the mda_extra to which extra points. It is safe to call this function
if extra is set to NULL.

2.2 Example

The simplest way to use this library is to simply load the entire MDA file, using the template below. Then
there are only two functions needed, mda_load() and mda_unload(), with the rest of the work coming from
accessing the MDA data structure.

#include "mda-load.h"
...
FILE *fptr;
struct mda_file *mda;
...
if((fptr = fopen(filename, "r")) == NULL)

exit(1);
if((mda = mda_load(fptr)) == NULL)

exit(1);
fclose(fptr);
...
/* Access the mda structure here. */
...
mda_unload(mda);
...

2

3 Data

Once you have a pointer to the allocated mda_file, you can access its members directly. The definition of
the various data structures are in mda-load.h. Assuming that the data pointer is called mda, here’s how you
access the data.

3.1 Header

(struct mda_header *) mda->header
(float) header->version
(long) header->scan_number
(short) header->data_rank
(long) header->dimensions[n] , [n] = [0] to [data_rank - 1]
(short) header->regular
(long) header->extra_pvs_offset

This section contains the global data values for the MDA file. version signifies the MDA format version,
normally 1.3. scan_number is the number assigned by saveData to the scan. data_rank show the number
of dimensions to the scan (for a 3-D scan, this is 3). The dimensions array (with data_rank elements)
contains the number of elements for each dimension of the scan; for a 3-D scan, dimensions[1] is the
number of elements to the 2-D scans. regular signifies whether the dimensions of any of the scans were
changed while the overall scan was running. extra_pvs_offset gives, for the section of extra PV’s, the
offset in bytes from the beginning of the file; if that section does not exist, this will be 0.

3.2 Scans

(struct mda_scan *) mda->scan
(short) scan->scan_rank
(long) scan->requested_points
(long) scan->last_point
(long *) scan->offsets
(char *) scan->name
(char *) scan->time
(short) scan->number_positioners
(short) scan->number_detectors
(short) scan->number_triggers
(struct mda_positioner *) scan->positioners[n] ,

[n] = [0] to [scan->number_positioners - 1]
(short) positioners[n]->number
(char *) positioners[n]->name
(char *) positioners[n]->description
(char *) positioners[n]->step_mode
(char *) positioners[n]->unit
(char *) positioners[n]->readback_name
(char *) positioners[n]->readback_description
(char *) positioners[n]->readback_unit

(struct mda_detector * scan->detectors[n] ,
[n] = [0] to [scan->number_detectors - 1]

(short) detectors[n]->number
(char *) detectors[n]->name
(char *) detectors[n]->description
(char *) detectors[n]->unit

3

(struct mda_trigger *) scan->triggers[n] ,
[n] = [0] to [scan->numbers_triggers - 1]

(short) triggers[n]->number
(char *) triggers[n]->name
(float) triggers[n]->command

(double *) scan->positioners_data[n] , [n] = [0] to [scan->number_positioners - 1]
(double) (scan->positioners_data[n])[m] ,

[m] = [0] to [scan->requested_points - 1]
(float *) scan->detectors_data[n] , [n] = [0] to [scan->number_detectors - 1]

(float) (scan->detectors_data[n])[m] ,
[m] = [0] to [scan->requested_points - 1]

(struct mda_scan **) scan->sub_scans

This section includes the scan data. It is also recursive in nature due to it being able to handle arbitrary
dimensions.

3.2.1 Structure

The overall structure for multidimensional files is dictated by scan_rank and sub_scans. As long as
scan_rank is greater than one, sub_scans will not be NULL and will contain an array of the next lower
dimensional scans (it will be NULL if mda_subscan_load() was used to retrieve the scan when the recursive
parameter set to zero). For a multidimensional scan, this takes the form of a tree, since each sub-scan can
also have its own sub-scans. For a higher dimensional scan, the values for the positioners and detectors apply
to all scan with its sub_scans.

Suppose a 5×8×20 scan, where you want to access the (3, 7, x) 1-D scan, you would access it as
mda->scan->sub_scans[2]->sub_scans[6]. However, if the scan was aborted, mda->scan->sub_scans[2]
or mda->scan->sub_scans[2]->sub_scans[6] might be NULL, depending on where the scan was aborted.
Using last_point can let you know the last “officially valid” sub-scan is sub_scans[last_point - 1]. The
reason that I say “officially valid” is that another scan might exist at sub_scans[last_point], as it was
the scan in progress that was aborted; one can use this data, but should take care.

3.2.2 Variables

As described before, scan_rank is the dimensionality of this scan. requested_points is how many points
were wanted, while last_point tells how many actually were finished. offsets is an array of requested_points
members, showing the distance from the beginning of the MDA file to the subscans; if the value is zero, then
that scan does not exist. name is the name of the scanner in EPICS, while time is when this particular scan
was started.

number_positioners tells how many positioners are moved as part of this scan. The positioners array,
holding number_positioners members, has a description of each positioner and its readback. number is
the internal number the scanRecord uses to identify this positioner, while name is what its called, and
description describes it. step_mode is how the scan determined what step to use: it can be linear, where
the spacing between steps is equal; table, where the step positions are read from an array; or fly, where
the step positions are read back during an on-the-fly scan. unit is the associated unit of the positioner.
Similarly, for the readback, there is readback_name, readback_description, and readback_unit.

The detector information is very similar to the positioners, as there is a detectors array with number_detectors
elements. For each detectors, there is also a number, name, description, and unit.

The trigger information is again similar to the positioners, with a triggers array with number_triggers
elements. Each trigger has a number and name associated to it, as well as a command, which is a value sent
to name to trigger.

The positioner data values are held in an two dimensional array named positioners_data. Since one
can’t allocate a two dimensional array directly, it’s actually an array of pointers (corresponding to each

4

detector), pointing to arrays of more pointers (corresponding the the data). To access the 8th data point of
the 12th detector, one would type (scan->positioners_data[11])[7]; the parentheses are not optional.

The detector data values, in detectors_data, is accessed similarly to the positioner data values.
The sub_scans variable is used for accessing lower dimensional scans (if they exist). It’s described in

Sec. ??.

3.3 Extra PV’s

(struct mda_extra *) mda->extra
(short) extra->number_pvs
(struct mda_pv *) extra->pvs[n] , [n] = [0] to [number_pvs - 1]

(char *) pvs[n]->name
(char *) pvs[n]->description
(short) pvs[n]->type
(short) pvs[n]->count
(char *) pvs[n]->unit
(void *) pvs[n]->values

This section, which doesn’t always exist (signified by extra being NULL), contains extra PV’s recorded
during the scan. number_pvs is the number of PV’s contained, with the PV’s being held in an array pvs.

For each PV, there is the name string and description string. type lets you know what kind of data
type it is, with the correspondence seen in Table 1. If type isn’t DBR_STRING, count gives the number of
elements to the array and unit string gives the unit for the values. The values themselves are held in an
array values.

Table 1: Extra PV data type
type name type value C type Description
DBR_STRING 0 (char *) zero-terminated string

DBR_CTRL_CHAR 32 (char *) byte array
DBR_CTRL_SHORT 29 (short *) short integer array
DBR_CTRL_LONG 33 (long *) long integer array
DBR_CTRL_FLOAT 30 (float *) floating-point array
DBR_CTRL_DOUBLE 34 (double *) double-precision floating-point array

Accessing the values is done by setting pointer values to the correct type, according to type and Table 1.
Suppose the third extra PV was of type DBR_CTRL_DOUBLE, and you wanted to access its fifth member, this
could be done using ((double *) pvs[2]->values)[4].

4 Basic Information Routines

It is possible to load only the basic information of an MDA file, saving load time and memory. This
information includes everything in the header, as well as the detector, positioner, and trigger descriptions
for each scan dimension. As this information is taken from the first scan of each dimension, there is an
assumption that every other scan is correctly represented by the first scan of its dimensionality.

4.1 Functions

struct mda_fileinfo *mda_info_load(FILE *fptr)
This function loads a fileinfo of the MDA file, returning a pointer to an mda_fileinfo structure.

5

void mda_info_unload(struct mda_fileinfo *fileinfo)
This will free the memory occupied by the mda_fileinfo to which fileinfo points.

4.2 Structure

(struct mda_fileinfo *) fileinfo
(float) fileinfo->version
(long) fileinfo->scan_number
(short) fileinfo->data_rank
(long) fileinfo->dimensions[n] , [n] = [0] to [data_rank - 1]
(short) fileinfo->regular
(long) fileinfo->last_topdim_point
(char *) fileinfo->time
(struct mda_scaninfo *) fileinfo->scaninfos[n] , [n] = [0] to [data_rank - 1]

(short) scaninfos[n]->scan_rank
(long) scaninfos[n]->requested_points
(char *) scaninfos[n]->name
(short) scaninfos[n]->number_positioners
(short) scaninfos[n]->number_detectors
(short) scaninfos[n]->number_triggers
(struct mda_positioner *) scaninfos[n]->positioners[n] ,

[n] = [0] to [scan->number_positioners - 1]
(short) positioners[n]->number
(char *) positioners[n]->name
(char *) positioners[n]->description
(char *) positioners[n]->step_mode
(char *) positioners[n]->unit
(char *) positioners[n]->readback_name
(char *) positioners[n]->readback_description
(char *) positioners[n]->readback_unit

(struct mda_detector * scaninfos[n]->detectors[n] ,
[n] = [0] to [scan->number_detectors - 1]

(short) detectors[n]->number
(char *) detectors[n]->name
(char *) detectors[n]->description
(char *) detectors[n]->unit

(struct mda_trigger *) scaninfos[n]->triggers[n] ,
[n] = [0] to [scan->numbers_triggers - 1]

(short) triggers[n]->number
(char *) triggers[n]->name
(float) triggers[n]->command

The structure of the mda_fileinfo structure is nonrecursive, and is thus easier to access. The variables
version, scan_number, data_rank, dimensions, and regular are the same as described in Section 3.1. The
variable last_topdim_point is the number of completed scans in the highest dimensional scan, while time
is the data and time of the start of the overall measurement. The information for each dimension’s scans
are in the scaninfos array. The variables contained in each entry is a subset of those found in the earlier
describes scan, and all are described in in Section 3.2.2.

6

